首页 进口孔板流量计

高考物理大题答案(高考物理电磁流量计)

一、高考高考北京高考理综试卷题目物理化学生物试题分布

A物理

分析一:2010年高考理科综合(北京卷物理部分)试题分析

2010年是物理物理北京新课标高考的第一年,在考前的大题答案电磁备考阶段,很多学校和教育机构的流量教研部门都很认真地研究今年高考的方向,笔者对此也非常关注。高考高考今天,物理物理备受瞩目的大题答案电磁2010年北京高考试题终于露出其庐山真面目了,笔者迫不及待的流量做了一遍,一颗悬着的高考高考心也算落地了。

曾在高考前的物理物理教研中本着新课标培养物理思想方法能力的原则,指出了图像法解决物理问题中需要注意横纵坐标等等知识点的重要性.因为这些内容最容易体现物理的基本思想方法:对实验的科学设计和对物理问题的科学分析.这些内容在今年的高考中的第14题、15题、大题答案电磁16题、流量18题以及实验题有了和学而思点睛班讲义以及春季班教学过程中几乎相同的高考高考内容的体现.

整体感觉今年的物理高考题无论从试题的难度,还是物理物理知识点的分布都比较合理,与我们之前教研和复习的大题答案电磁方向都比较吻合,下面结合2010年的考试说明与2009年的高考物理试题对今年的高考题简单分析如下:

在北京2010年高考考试说明中对物理学科的考试叙述如下:物理学科中的力学、热学、电磁学、光学、近代物理五个知识板块变为力学、电磁学、光学、近代物理等四个板块,缩小了知识面,但力、电作为主干知识没有变化。我对比了09和10的试卷,以及分析了10年北京一模、二模的试卷,在2010年的试卷中主要体现出以下特点:

一、选择题

今年在选择题8道题的选择上在非重点章节的重点内容中考查了4道题目,一道狭义相对论的基本理论(第13题)此题可以认为是取代热学和气体内容的,还有三道是比较常规的,基本上位置都没有太大变化的光学(第14题)、原子物理(第15题)、天体运动(第16题),这四道题难度比较小,但是基本体现了今年考试说明中的思想,比如15题属于估算问题,16题考查的是自转不解体问题,这两类问题属于重点新题型,考查比较基础。17至19题基本考查重点章节的重点内容,20题用一个比较巧妙的方法考查了基本公式,总之在选择题目上基本体现了考试说明中的对能力的考查,总体的感觉是学生需要有扎实的基本知识,和灵活的应用能力。学生没有必要去抓偏、难、怪的知识,要以基础为主。

二、实验题

今年实验题的考查,与09年略有不同,今年实验题就一道大题18分,分两部分,但是两部分都考查的是电学,主要包括半偏法的考察、实验仪器的选择、电流表的改装,供电电路的选择等知识,可以说实验将是今年高考物理拉分的一道题,因为尽管复习的时候当做重点来做的,但是遇到问题的时候还会出现细节丢分的问题,这就要求学生在复习的时候一定要做到以下两点:

(一)加强审题、阅读能力的训练,正确理解题设情景,提取信息,分析处理实际问题等。

(二)细节决定成败,在这部分知识复习过程中一定要注意细节。

三、计算题

22题16分,主要考查平抛运动和机械能守恒的只是,属于常规的送分题目,学生答题的时候注意答题的规范性

23题是体现了新课标的考查思想,主要知识点还是带电粒子在电磁场中的受力情况以及电磁场的一些基础知识,跟09年的电磁流量计一样主要考察学生对信息的提取以及应用已经有的知识去处理新的信息,这就是探究能力的体现,要求学生加强审题、阅读能力的训练,正确理解题设情景,提取信息,分析处理实际问题等。

24题与09年的24题基本考查思想一样,主要考查的知识点也是动量中的完全非弹性碰撞问题,难点主要在于归纳法手段的应用,最后得出一个归纳的结论,这其实是对北京中学生探究能力的一种考查,其实就学生的能力来说解决这类题是没有问题的,关键是学生在心里就认为这是个难题,另外就是要给这道题一个足够的时间去解决。

总之,2010年的物理高考题应该是北京理科考生考生今年夏天的一道清凉的空气,试题的似曾相识还有高起点低落点,都会让他们的高考成绩锦上添花的

分析二:

B化学

分析一:2010年北京高考理综试题分析之化学部分

2010年的高考已经落下帷幕,这第一份北京实行新课改后的化学试题,基本圆满的完成向新课改的过渡。总分值由108分减为100分,实际题目的思维容量和对学生的能力要求比起09年也降低了不少。从学生反馈的情况来看,今年化学题目整体的难度“简单的让人觉得诡异”。有机化学中稍微有些难度的酚醛树脂的考点,和二卷中甲醇与硝酸的反应也都被我们成功押中。但我们分析认为,由于是新课改后的第一份试卷,今年化学题目简单很可能是一个平稳过渡与缓冲。也就是说,今后几年里,题目的难度很可能会有明显的提高。这样的形势对我们2011年参加高考的考生来讲,其实是比较严峻的。好了,套话就此为止。下面就具体例题加以分析,希望能够对2011年参加高考的同学们有所帮助。

我们先来看一卷:

今年理综化学一卷的选择题难度不是很大,正确与错误的选项都比较明显,所涉及的考点及题型都没有偏、难、怪的题目出现,分别有金属腐蚀,原理配方程的正误判断,SO2的性质,电离水解的拼盘题目,化学平衡等,稍有有点新的题目可能就要属危险品类型的判断这道题目了,当然难度也不是很大。可能是由于换了一位老师命题,题目难度较09年相比有了十分明显的下降,且没有出现像09年选择题第10、12题那样的“杯具”。

下面我们看二卷:

根据学生的反映,今年的二卷题目难度也不是很大。

有一道题是抗酸药物单一成分元素的判断,结合了沉淀pH的信息点,旨在考查铝元素的性质。比起以往如08年北京卷的混合物可能组成判断,又简单了不少一道以工业生产为背景的题目这种题目一向是高起点,低落点,像西城一模中碳酸锂那个题目就是这样的。这道题目主要考查了热化学方程式,根据能量图吸放热的判断,氧化还原反应等基本原理的内容。我们点题班甚至讲过甲醇和硝酸反应的原题!相信不会难倒我们的学员。值得注意的是,这道题目中出现了针对原理的设问,要求学生真正做到知其然,知其所以然。

一道探究性试验的题目,与之前大家一模二模中见过的各种复杂的探究性实验不同的是,这道题目选择了一个很简单的原理:探究卤素的氧化性规律。题目设问依然针对原理,缺少的步骤,要求学生对整个实验的原理,步骤,结论,甚至对照实验的设计有一个整体的把握。以上这两道题目很好的体现了新课改的精神。

再有一道题,有机推断:由苯甲醛引发的合成题目,中规中矩的考查了酯的合成,酯的碱性水解,这些点在我们的课上都有很详尽的讲解,相信新东方的学员们对“查氧补水”这个小技巧都不会陌生。信息方程式涉及到了酚醛树脂的考点,考完试就有学生激动的打电话给我说,这6分被秒杀了。的确,最后的押题,我们详细的讲解了酚醛树脂合成的原理和推广。广大学员应该可以秒掉这可能最有区分度的一问了。

好了,2010年的题目说完了,2011年参加高考的同学们,大家需要注意些什么呢?我先说上两点吧,希望大家认真看一看,相信会对你有帮助。

先说“有机”吧:今年北京各区的一模二模结束后,学生开始普遍反映有机推断大题有些力不从心,压力来自三方面:

1、有机化学的知识体系不完善。我们很多同学基本知识点都会,基本方程式都会书写。但还是做不出来题目,拿不到分数。这是为什么呢?原因其实很简单,同学复习有机除了复习基本知识点之外,就剩下做题了。然后就题论题,总结下来的唯一的技巧就是有时根本没用的“倒推法”。再放弃个同分异构体的书写,好不容易会写的方程式再给忘了写反应条件,就基本拿不到什么分数了。

2、理综中来自物理和生物的压力很大,化学经常最后写又写不完,草草填几个空了事。但有机除了官能团名称,反应类型的空想随便写又写不出来……

3、该题目分值增加至20分左右。其中还有陌生反应原理的现学现用,原理都看不懂,用就更不用说了。

虽然2010年的“有机”并不难,但我们应该未雨绸缪一下,大家有理由相信这样一个趋势:今后几年有机化学的难度很可能呈现波动上升!想要啃下这一大版块,单纯的死记硬背知识点已经不顶用了,我们应该加强的是推断技巧的训练并建立对陌生原理作出快速反应的能力。希望今年我的学生们,能够把自己的经验给学弟学妹们分享一下,让更多的考生搞定有机化学。

探究性实验

近年来,全国各地的考题中涌现出许多探究性实验的题目。题目变化繁多,很多同学在复习的时候觉得无从下手。其实不然,仔细分析这些所谓的“探究性”题目,我们会发现这类题目经常由两部分组成:

1、进行过“包装”的大纲内考点,也就是所谓的“高起点,低落点”。

2、“动态变化”,“反常变化”,“未知结果”等创新考点。

了解了对方的出题习惯,我们就可以有针对性的准备了。比较遗憾的是,今年的高考中没有体现出探究性实验较难的地方。但希望新高三的学生做好充分的心理准备。我们会在考前对学员进行特训,内容就是从两方面入手:

1、熟悉考点包装的一些基本套路。

2、主动迎击,训练多维的全面的思考问题的能力。

由于篇幅所限,我就不再展开来谈了。其实化学想拿高分并不难,高一高二的基础不好也没有关系。只要你肯努力,一切都还来的及。

C生物

分析一:2010年北京高考理综试卷生物部分点评

2010年北京市高考理综生物部分的试题整体难度较往年略有下降,选择部分考查基础知识,大部分的学生在5分钟之内全部做完,正答率较高。非选部分考查对知识的理解以及科学史的相关内容,阅读分析量较大,学生在考场上时间分配还是不够合理,很多学生只给生物非选题15分钟左右的时间,是不足以完成阅读和思考的。

新课改后的高考将生物学科的分值由原来的72分提高到了80分,选择题多了一道题(6分),简答题多了一个空(2分),考试范围涵盖了必修一、二、三和选修一、三共五册书的内容。其中选修一考纲只要求考查微生物部分的内容,其它专题在这次考试中未做要求,但并不代表以后不做要求,所以建议学生对于选修教材要予以重视,如:今年选择第一题就考查了果酒制作过程中的操作,只要学生曾经做过,就很容易做答。

今年的高考试题,将考纲中新增内容都做了呈现。如:演替部分与稳态结合,考了几个基础知识(选择第5题);生物科学史(非选30题),利用科学家对DNA复制方式的研究为题干,考了实验分析及发现史中的重大成果,题目阅读分析量很大,但事实上没有脱离课本,教材中DNA复制方式的研究为选学内容,所以在复习中,认真看过书的同学就会觉的很容易。

总体感觉今年的生物题目比以往简单,尤其是选择题,非选题只要基础知识和知识之间的逻辑关系清楚,留出一定的时间思考,还是很容易的。充分体现了生物科学素养的考查,光靠死记硬背的同学今年会很吃亏。而且对于教材所给实例的把握也很重要,希望新高三的同学们能够及早回归课本,分析教材中所举实例,建立生物知识之间的逻辑关系。死记硬背的只是名词,而不是知识本身。

对于即将在2011年参加高考的学生来说,今年的理综生物试题是一个复习备考的很好的指导。

首先,在高三最初的复习过程当中,一定要把基础打牢,梳理知识的同时沿着科学家的发现过程建立知识之间的联系,明白为什么孟德尔的遗传规律人们奉为经典?为什么一个DNA的复制,要考来考去?明白这些经典之所以经典的原因,这样在考试的时候才能灵活的应用。

其次,教辅材料决不能取代课本,关注教材中的所有内容,包括练习和旁栏。不要陷入题海中不能自拔,题目毕竟只是为了考查某些内容而出的,以往更多是为了考而出的题,新课标下,更多是如何应用知识去分析问题。

最后,要不断的练习知识迁移能力,在生活中看到一些问题要尝试用自己学过的内容去解释。这样才能适应各式各样的题干材料。

分析二:解析2010年北京高考生物试卷

变化最大的学科

2010年高考是北京新课改的第一年高考,在新课改中变化最大的是生物学科,在此试卷中充分表现出来,生物是试卷中变化最大的部分。试卷体现了新课程当中对学生四种能力,即理解能力、获取信息能力、实验探究的能力以及综合能力方面的考察,其中对获取信息能力,实验探究的能力考察力度比较大。试题沿用了稳中求变的思想,但不可否认的是变化的步伐稍微大了点。

为什么说步伐稍微大了点呢?以往高考考察重点的知识今年高考都没有或者考察很少,如必修1中的主干知识光合作用与呼吸作用部分;必修2中的重头戏遗传部分;必修3中生态系统部分,这是以往基本每次都会考察的知识,并且都占有较大部分的分值。可是在今年高考中光合作用与呼吸作用整张试卷基本没有考察,而遗传部分与生态部分也仅分别考察了一道难度很低的选择题。

稳步改变

不过试卷中考察的也的确是高考说明当中所列出来处于二级要求的知识点偏多,所以以往单纯的重点突击,已不能获得使你满意的成绩。题型正由知识点集中、死背课本、题深难度向知识点的分散、信息的扩大、考察的灵活方面改变。

新课改在悄悄的倾向能力的考察,对于明年参加高考的学生,首先要把基础知识打扎实,你的能力才有可能提高,不要只是去背背,做大量的题,而应该在对基础知识的应用、生活实际的联系等方面加强,今年试卷使我们逐渐改变对生物认识,使生物逐渐进入到理科中,但不是靠计算,而是靠推理,生物是越来越在重视逻辑思维等一些能力的查考。

试卷具体分析:

第1道题:考察的是选修1中的实验,但这道题也是选修1与必修1中呼吸部分相结合的一道题目,隐藏考察了酵母菌无氧呼吸会产生CO2气体这块知识。

第2道题:主要考察了细胞类型及细胞器的结构和功能,四个选项用了四种生物把出题者的考察思路表现出来,考察了学生基础知识的扎实度。但是题点还是很明确的。

第3道题:考察了神经调节与细胞结构的联系,AB两个选项可能会把一些同学弄迷糊,但与第2道题相似,题点很明确,这与09年高考很接近。

第4道题:考察了比较基础的基因自由组合定律,题比较简单,但是由于该题处于的位置,对学生的自信心有一定考察。

第5道题:考察了必修3生态中的部分知识,学生选对需要一定的耐心。

总体说选择题难度不大,与以往高考有了明显区别。

三道非选择题,都可以看做是实验题。29题有点类似探究实验,30题为验证实验,31题是对实验结果和现象的分析。难度比以往高考增加不少。改变也比较大,以前学生都不看题干都能答出80%的空,今年只能在32空中答出8个空。

第29题:乙生长素类似物为主题,学生相对熟悉一点,但是整道题对于学生还是较陌生的。10个空中只有7个空是完全按照题干中图文分析而来。

第30题:考察的是必修2中遗传物质探究过程的典型实验,去验证另外一个现象,需要学生有一定的知识迁移能力,不能死背课本。12个空必修全部按照题干中图文分析得出。

第31题:考察了热门话题环保与生物产卵量的相关联系,该题10空中有5个空可以直接答出,但是学生对这道题中有很些空还是很陌生的,第4小题更是基本没有涉及过。

二、电场 磁场中 有效线段 一般指什么

高中物理“磁场”教学研究2012-05-17 06:57一、磁场主题的学科知识的深层次理解

(一)《磁场》的知识结构

本主题内容按如下的线索展开:

磁场概念的建立和描述--磁场对电流和运动电荷的作用--安培力和洛仑兹力的应用。这样安排,知识的逻辑结构比较清晰,也符合学生的认知规律。

本主题可以分为三个单元。第一单元主要内容为:通过演示实验使学生对磁场有了一定的感性认识,在此基础上,利用科学的方法来描述磁场。本单元可以分为三节课。第 1节在初中相关知识的基础上,通过磁体间的作用、小磁针指南北的性质和奥斯特实验等现象认识到在磁体、地球和电流周围存在磁场,认识到磁体与磁体、磁体与电流、电流与电流之间的作用力是通过磁场发生的。第 2、 3两节学习了磁场的描述。磁场具有强弱和方向,磁场的这种性质可以用磁感应强度进行定量描述,也可以用磁感线定性描述。第二单元学习磁场的一个性质:磁场对通电导线的作用力--安培力。第三单元学习磁场的另一个性质:磁场对运动电荷的作用力--洛伦兹力,以及带电粒子在匀强磁场中的运动,里面穿插了洛仑兹力的应用,尤其是在现代高新科技中的应用。

这样安排,从初中知识讲起,注重了循序渐进,先宏观后微观,注重了知识的依次生成。

(二)《磁场》在学科知识体系中的地位及相互关系

学生在初中已经学习了简单的磁现象,头脑中初步建立了磁场的概念。在本模块我们刚刚学习了静电场,对于磁场,可以通过和电场类比进行教学。比如磁感应强度与电强场度类比;磁感线与电场线类比;安培力、洛伦兹力和电场力类比。类比是一种重要的学习方法,它不单单是从旧知识发展新知识的生长点,同时通过对比,使学生辩析两者的不同,从而对知识的理解更深入。另外,通过类比学习,也可以发展学生的求同思维和变异思维,培养学生的思维能力。

本主题内容对学生的空间想象能力比较高,电流周围的磁场、安培力和洛伦兹力等内容都涉及到不同物理量之间的空间关系。在教学中注意通过立体图和平面图(三视图)之间的转化来培养学生的空间思维能力。

带电粒子在磁场中的运动轨迹是圆周,解决这类问题,对平面几何中圆的知识应用较多,通过习题训练,可以培养学生应用数学知识解决物理问题的能力。

本主题涉及到很多实际应用,课本中涉及到磁电式电流表、电视显像管、回旋加速器、质谱仪等,课后习题涉及到电流天平、速度选择器、磁流体发电、电磁流量计等。通过这些内容可以激发学生的学习兴趣,可以使学生树立理论联系实际的意识,还可以训练学生把实际问题转化成物理模型的能力。

注意物理学思想与方法的渗透。新课标教材首次引入"电流元"这个物理量,就像质点、点电荷、试探电荷一样,电流元也是一个理想化模型。另外,电流元还涉及到"微元法"这一物理思想。其实我们在引导学生分析电流在非匀强磁场受力时,需要用到微元法,这次课改把微元法纳入教材内容,提醒我们在课堂上应该有意识、有步骤地渗透物理思想和方法。

本主题的教学内容,对后续知识的学习是重要的基础。比如选修 3-2中电磁感应、交流电和选修 3-4中的电磁场和电磁波。

(三)对磁感应强度概念的深入理解

1.磁感应强度的几种定义

磁感应强度是描述磁场的基本物理量,已知一个磁场的磁感应强度的分布,就可以确定运动电荷、电流在磁场中受到的作用力。磁感应强度 b是和静电场的电场强度 e相对应的物理量。静电场对电荷有作用力,静电场可以用检验电荷在电场中各点受到的力来研究,电场强度 e定义为 e=f/q。研究磁场也要引进一个检测的物体,由于磁场对运动电荷、电流有作用力,对通电线圈有力矩的作用,所以可以采用这三种物体作为检测磁场的物体,采用不同的检测物体,也就相应地给出了磁感应强度 b的不同定义。

2.下面介绍常见的磁感应强度的三种定义方法。

(1)用一段通电直导线受到的磁场力来定义

通电直导线在磁场中受到力的作用,这种力叫做安培力。实验表明,如果直导线的长度为 l,电流为 i,垂直放在匀强磁场中,作用在导线上的安培力大小为 f=ilb。由此可以定义磁感应强度 b,即 b=f/(il)。

这种定义方法是用一小段通电导线作为检测物体,安培力能够演示,形象直观,便于学生接受。中学教科书多采用这种定义方法,在中学物理实验室用来测量磁感应强度的电流天平就是根据这个原理设计的。但是这种方法确定的是一小段通电导线所在范围内磁感应强度 b的平均值,只有对匀强磁场,给出的才是各点的 b;对于非匀强磁场,不能给出各点的 b,因此,对学生建立磁感应强度的概念有不利之处。

(2)用通电矩形线圈受到的力矩来定义

面积为 s的小矩形线圈,通以电流 i,当线圈平面跟磁场平行时,线圈所受磁场力的力矩为 m=bis,由此可给出 b的定义式,即 b=m/(is)。

由于线圈等效于一个小磁针,线圈在磁场中受到的作用力相当于小磁针受到的作用力。所以用线圈作为检测物体来研究磁场,与历史上对磁场的认识过程比较一致,某些普通物理教科书中有采用这种定义方法的,但是由于线圈总有一定的大小,所确定的也是线圈范围内的磁感应强度 b的平均值,不能严格地确定磁场中各个点的 b。

(3)用运动电荷受到的磁场力来定义

实验表明,运动电荷在磁场中要受到力的作用,这个力叫做洛伦兹力。运动电荷在磁场中某点所受磁场力的大小跟电荷量 q、运动速度 v以及该点的磁感应强度 b有关系,还跟运动方向与磁场方向间的夹角有关系,当电荷运动的方向垂直于磁场时所受的磁场力最大,且 f=qvb,由此可给出磁感应强度 b的定义式,即 b=f/(vq)。

电磁学是研究电磁场与电荷间相互作用及运动规律的,电磁场对电荷有作用力,通过电场对电荷的作用力引入了电场强度 e,与此对应,通过磁场对运动电荷的作用力来引入磁感应强度 b。从理论上讲,这种定义 b的方法也比较本质、严谨,所以许多教科书中采用这种定义方法,但这种定义方法比较抽象,要求学习者有较高的抽象思维能力和推理能力。

磁感应强度还有一个名称叫做磁通密度,即它在数值上等于通过与磁场方向垂直的单位面积的磁通量大小,反映了该处磁感线的疏密情况。这种定义方法可以把描述磁场的两种方法磁感应强度和磁感线有机地结合起来,便于学生理解。

3.《磁场》知识的拓展

磁的应用非常广泛,随着传感器技术的不断发展,和磁有关的霍尔元件得到广泛应用,我们下面主要介绍霍尔效应及其应用。

霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(a.h.hall,1855-1938)于 1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应也是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

在半导体薄片两端通以控制电流i,并在薄片的垂直方向施加磁感应强度为 b的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为 u h的霍尔电压。

根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

由于通电导线周围存在磁场,其大小与导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。

如果把霍尔元件按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号就可以传感出该运动物体的位移。若测出单位时间内发出的脉冲数,则可以确定其运动速度。

2010年北京高考就考察了霍尔效应及其应用,题目如下:

23.( 18分)利用霍尔效应制作的霍尔元件以及传感器,广泛应用于测量和自动控制等领域。

本题在题干中介绍了霍尔效应的现象和产生机理等相关知识,考察学生联系实际,建立物理模型,应用所学知识解决实际问题的能力。在第 3问还提出一个开放性问题"利用霍尔测速仪可以测量汽车行驶的里程。除此之外,请你展开"智慧的翅膀",提出另一个实例或设想。"本设问给学生提供了一个对问题进一步探索研究的空间和平台,引导学生学以致用、关注社会、关注身边的生活。应该说,这样设问,体现了课程改革的基本理念,对提高学生的科学素养、对中学物理教学起到了良好的导向作用。

二、《磁场》主题的教学策略

《磁场》主题的教学重点是,第一,学生在认识磁场的基础上正确理解磁场的描述方法,即理解磁感应强度这个概念以及磁感线的物理意义。第二,磁场对通电导线或运动电荷的作用力,即安培力和洛伦兹力。本主题的难点是应用磁场对运动电荷的作用规律来分析粒子在磁场中的运动,以及和磁场有关的实际应用。

(一)《磁感应强度》教学策略

磁感应强度是电磁学的基本概念之一,是本主题的重点。磁感强度概念的引人、方向的规定、大小的定义都可以通过和电场强度类比来学习,通过学习,可以让学生体验类比这种科学研究方法。但磁感强度方向的规定用小磁针 n极的受力方向,磁感强度的大小利用电流受力来定义,这又比电场强度定义更复杂,往往使学生产生混淆。

有的教材中引人电流元这个理想模型,就像质点、点电荷、试探电荷一样,电流元也是一个理想化模型。另外,电流元还涉及到"微元法"这一物理思想。在用 v-t图像求位移时,学生已经接触过微元法,电流元的引人可以让学生进一步体悟"微元法"这一物理思想。

磁感应强度是用比值定义法来定义的。比值定义法是物理中最常用的定义物理量的方法,类比电场强度,结合微元法,使学生进一步巩固比值定义法。

《磁感应强度》教学案例

1.磁感应强度的方向

小磁针在磁场中静止时,它的 n、s的指向是唯一确定的,拨动它,它将发生转动,但当它重新静止时,又回到原来的指向。所以物理学中就把小磁针静止时 n极所指的方向规定为该点的磁场方向,即磁感应强度的方向。或者说,小磁针n极的受力方向或s极受力的反方向为该点的磁感应强度的方向。

2.磁感应强度的大小

问题:小磁针确定磁场的方向非常方便,但无法确定n、s极在磁场中的受力大小,怎么确定磁场的强弱呢?

磁场除了对磁体有力的作用外,还对通电导线有力的作用。我们可以根据通电导线在磁场中的受力情况来描述磁场的强弱。请学生猜想磁场对电流的作用力和哪些因素有关?

做好如图所示的定性演示实验:

( 1)磁场力大小和悬线的偏角正相关,为了现象明显,悬线不能太短。演示时注意装置的摆放,让学生便于观察偏角的大小。

( 2)当偏角不同时,要慢慢移动磁体使导线相对于磁体的位置不变。

( 3)分别接通1、2和1、4,改变导线通电部分的长度,保持电流大小相同,比较偏角大小。

( 4)保持通电部分长度不变,改变电流的大小,比较偏角的大小。

定量实验表明:当通电导线和磁场垂直时,它受力的大小与导线的长度 l成正比,又与导线中的电流 i成正比。即 f il。或者 f/il=定值。这个定值的大小可以反映磁场的强弱,定值越大,表明磁场越强。

为了反映磁场中各点的磁场强弱,在物理学中,把很短一段通电导线中的电流 i与导线长度 l的乘积 il叫做电流元。电流元和质点、点电荷一样都属于理想化模型。有了电流元这个模型,我们就可以定义磁场中每一点磁场的强弱,即磁感应强度的大小。

定义:当导线和磁场垂直时,若电流元 il在该点所受磁场力为 f,则磁感应强度 b的大小大小等于 f与 il的比值。

对于该定义,应该强调以下几点:

磁感强度 b的单位特斯拉 t由定义式确定, 1t=1na-1 m-1

定义的前提条件是导线和磁场垂直。

在磁场中同一点,f/il=定值。即某点磁感应强度 b与电流元 il、及其受力 f无关。

磁感应强度 b的方向并非 f的方向,二者互相垂直,b的方向为小磁针 n极的受力方向。

作为对磁感应强度这个概念的的复习巩固,可对比磁场和静电场,比较磁感应强度和电场强度的异同。两者都用比值法定义物理量,其基础是力与电荷量、电流元成正比,比值反映了场的强弱;二者也有明显不同,从方向看,静电力与电场强度的方向总是相同或相反,而磁场对通电导线的作用力方向与磁感强度的方向总垂直。从大小看,某试探电荷在电场中某位置受静电力的大小是一定的,而某电流元在磁场中受的磁场力大小还与通电导线如何放置有关,定义式的成立条件是磁场和导线垂直。

(二)《磁感线》教学策略

用磁感线描述磁场的强弱和方向,由于有初中基础和前面电场线的学习,理解起来并不困难。但由于磁感线的分布是空间的,而不是平面的,应该通过演示实验来加深认识,教学中应注意培养学生学习的空间想象力。可以采取"一图多画"的办法,即对于同一个物理情景,从不同的角度用图形来描绘,可以先画出立体图,然后转化成不同的平面图,像正视图、侧视图和俯视图。

《磁感线》教学案例

1.磁感线

明确曲线上每一点的切线方向跟这点的磁感应强度方向一致,或者说与静止于该点的小磁针 n极所指的方向一致。

可以用铁屑在磁场中的分布情况来模拟磁感线的形状。这是因为细铁屑在磁场中磁化成小磁针,轻敲玻璃板,铁屑就会有规则地排列起来,模拟出磁感线的形状。

明确磁感线只是为了研究问题方便而假想的一系列曲线,磁体周围并不真正存在磁感线。

引人磁感线后,让学生对比电场线和磁感线,并明确:

两者都用切线方向描述场的方向,用疏密描述场的强弱;

电场线是不闭合的,始于正电荷,终于负电荷;磁感线是闭合的,没有起点和终点。

学生明确了用磁感线来描述磁场的强弱和方向后,可以引导学生研究几种常见的磁场,加深理解,同时也为进一步学习提供具体的磁场形式。

学生在初中已经学习过条形磁体、蹄形磁体、同名磁极间、异名磁极间的磁感线。比较熟悉通电螺线管周围的磁场。高中阶段我们在复习以上磁场的基础上,应该把通电直导线和环形电流的磁场作为重点。

首先用细铁屑模拟出通电直导线的磁感线,使学生认识到通电直导线周围的磁感线是以导线上各点为圆心的同心圆。然后用小磁针来确定磁感线的方向。把实验现象用图形表示出来,和学生共同总结出安培定则。

为了培养学生的空间想象能力,可以引导学生做一做图形转换,先画出通电直导线周围磁场的立体图,然后转换出平面图。首先让学生识记两个表示方向的符号和.的意义,然后带领学生画出纵剖图,图中的符号和.表示磁感线的方向。接着再让学生画出俯视图和仰视图,图中的符号和.表示电流的方向。引导学生比较仰视图和俯视图,两图描述同一磁场的磁感线,一个是逆时针,而另一个是顺时针,所以我们描述环形磁场方向的时候,必须明确观察的角度。

由于磁感线的分布是空间的,而不是平面的,所以我们有必要演示磁场的空间分布情况,图中的实验装置给学生看一看,学生马上有豁然开朗的感觉。

对于环形电流的磁场,从磁感线的描述、磁场方向的确定到安培定则的得出,由于有直导线的磁场作为铺垫,教师只要做好演示实验,归纳和总结大可让学生完成,一方面是给学生一个练习的机会,另一方面也可以培养学生的思维能力和科学表述能力。

最后,教师可以引导学生把环形电流和通电直导线以及通电螺线管的磁场做一做分析对比。我们可以把环形电流分割成无数个电流元,每一个电流元可以看成是一个通电直导线,环形电流的磁场可以认为是这些电流元的磁场进行矢量叠加得到的。从另一个角度看,环形电流也可以看作只有一匝的通电螺线管,从磁场分布情况看,通电螺线管可以等效成一个条形磁体,环形电流可以等效成一个小磁针。通过这样的类比,使学生对电流的磁场形成一个统一的认识,另外等效思想也为学生分析具体问题提供了一个非常方便的办法。比如下面问题:

如图所示,两个完全相同的闭合导线环挂在光滑绝缘的水平横杆上,当导线环中通有同向电流时(如下图),两导线环的运动情况是()

a.互相吸引,电流大的环其加速度也大

b.互相排斥,电流小的环其加速度较大

c.互相吸引,两环加速度大小相同

d.互相排斥,两环加速度大小相同

尽管学生还没有学习左手定则,但我们可以用等效方来分析本题,把两个环形电流等效成一对小磁针,靠近的两端为异名磁极相互吸引,所以两个导线环互相吸引,又由于牛顿第三定律,相互作用力大小相等,而两环完全相同,由牛顿第二定律可知,两环加速度大小相同。所以正确答案为 c。本题也可以把环形电流分割成无数的电流元,每两个相对的电流元电流方向相同,相互吸引。

希望对你有帮助,望采纳,谢谢。

三、高考物理重要 常用公式有哪些

高考物理,需掌握以下基本公式与二级结论,记熟二级结论并能熟练应用更为关键。

高中物理重要公式与二级结论。

一.力物体的平衡:

1.N个力平衡,则任意一个力与其它力的合力等大反向。.

2.三个大小相等的力平衡,力之间的夹角为120度

3.物体沿斜面匀速下滑,则.

4.两个一起运动的物体“刚好脱离”时:

恰接触不挤压,弹力为零。此时速度、加速度相等,此后不等.

5.同一根轻绳上的张力处处相等。.

6.物体受三个不共线力而处于平衡状态,则这三个力必交于一点(三力汇交原理).

7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法。

二.直线运动:

1.匀变速直线运动:

平均速度:

时间等分时:

中间位置的速度:

纸带处理求速度、加速度:

2.初速度为零的匀变速直线运动的比例关系:

等分时间:相等时间内的位移之比1:3:5:……

等分位移:相等位移所用的时间之比

3.竖直上抛运动的对称性:t上=t下,V上=-V下

4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时间小于给出的时间时,用V2=2aS求滑行距离.

5.“S=3t+2t2”:a=4m/s2,V0=3m/s.

6.追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.

7.运动的合成与分解中:

船头垂直河岸过河时,过河时间最短.

船的合运动方向垂直河岸时,过河的位移最短.

8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解.

三.牛顿运动定律:

1.超重、失重(选择题可直接应用,不是重力发生变化)

超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.

失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。有完全失重(加速度向下为g).

2.几个临界问题:

3.速度最大时往往合力为零:

4.牛顿第二定律的瞬时性:

不论是绳还是弹簧:剪断谁,谁的力立即消失;不剪断时,绳的力可以突变,弹簧的力不可突变.

四.圆周运动、万有引力:

1.向心力公式:.

2.同一皮带或齿轮上线速度处处相等,同一轮子上角速度相同.

3.在非匀速圆周运动(竖直平面内的圆周运动)中使用向心力公式的办法:沿半径方向的合力是向心力.

4.竖直平面内的圆运动:

(1)“绳”类:最高点最小速度

(此时绳子的张力为零),最低点最小速度

(2)“杆”:最高点最小速度0(此时杆的支持力为mg),最低点最小速度

5.开普勒第三定律:T2/R3=K(=4π2/GM){ K:常量(与行星质量无关,取决于中心天体的质量)}.

6.万有引力定律:F=GMm/r2=mv2/r=mω2r=m4π2r/T2(G=6.67×10-11N•m2/kg2)

7.地球表面的万有引力等于重力:GMm/R2=mg;g=GM/R2(黄金代换式)

8.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2

(轨道半径变大时,线速度变小,角速度变小,加速度变小,势能变大,周期变大)

9.第一(二、三)宇宙速度V1=(g地R地)1/2=(GM/R地)1/2=7.9km/s(注意计算方法);V2=11.2km/s;V3=16.7km/s

10.地球同步卫星:T=24h,h=3.6×104km=5.6R地(地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同)

11.卫星的最小发射速度和最大环绕速度均为V=7.9km/s,卫星的最小周期约为86分钟(环地面飞行的卫星)

12.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。

13。物体在恒力作用下不可能作匀速圆周运动

14。圆周运动中的追赶问题(钟表指针的旋转和天体间的相对运动):,其中T1<T2。

五.机械能:

1.求功的途径:

①用定义求恒力功.②用动能定理(从做功的效果)或能量守恒求功.

③由图象求功.④用平均力求功(力与位移成线性关系).

⑤由功率求功.

2.功能关系--------功是能量转化的量度,功不是能.

⑴重力所做的功等于重力势能的减少(数值上相等)

⑵电场力所做的功等于电势能的减少(数值上相等)

⑶弹簧的弹力所做的功等于弹性势能的减少(数值上相等)

⑷分子力所做的功等于分子势能的减少(数值上相等)

⑷合外力所做的功等于动能的增加(所有外力)

⑸只有重力和弹簧的弹力做功,机械能守恒

⑹克服安培力所做的功等于感应电能的增加(数值上相等)

(7)除重力和弹簧弹力以外的力做功等于机械能的增加

(8)功能关系:摩擦生热Q=f•S相对(f滑动摩擦力的大小,ΔE损为系统损失的机械能,Q为系统增加的内能)

(9)静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做正功、负功、还可以不做功,但会摩擦生热。

(10)作用力和反作用力做功之间无任何关系,但冲量等大反向。一对平衡力做功不是等值异号,就是都不做功,但冲量关系不确定。

3.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能.

4.发动机的功率P=Fv,当合外力F=0时,有最大速度vm=P/f(注意额定功率和实际功率).

5.00≤α<900做正功;900<α≤1800做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功).

6.能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.

六.动量:

1.同一物体某时刻的动能和动量大小的关系:

2.碰撞的分类:

①弹性碰撞——动量守恒,动能无损失

②完全非弹性碰撞——动量守恒,动能损失最大。(以共同速度运动)

③非完全弹性碰撞——动量守恒,动能有损失。碰撞后的速度介于上面两种碰撞的速度之间(大物碰静止的小物,大物不可能速度为零或反弹)

3.一维弹性碰撞:动物碰静物:V2=0,

(质量大碰小,一起向前;质量相等,速度交换;小碰大,向后转)

4.A追上B发生碰撞,满足三原则:

①动量守恒②动能不增加③合理性原则{A不穿过B()}

5.小球和弹簧:①A、B两小球的速度相等为弹簧最短或最长或弹性势能最大时

②弹簧恢复原长时,A、B球速度有极值:若MA≥MB时,B球有最大值,A球有最小值;若MA<MB时,A球最小值为零,B球速度可求,但不为极值.(如图)

6.解决动力学问题的三条思路:力、功能、动量

七.机械振动和机械波:

1.物体做简谐振动:

①在平衡位置达到最大值的量有速度、动能

②在最大位移处达到最大值的量有回复力、加速度、势能

③通过同一点有相同的位移、速率、回复力、加速度、动能、势能、可能有不同的运动方向

④经过半个周期,物体运动到对称点,速度大小相等、方向相反。

⑤经过一个周期,物体运动到原来位置,一切参量恢复。

2.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”

3.波动图形上,介质质点的振动方向:“上坡下,下坡上”;振动图像中介质质点的振动方向为“上坡上,下坡下”.(要区分开)

4.波进入另一介质时,频率不变、波长和波速改变,波长与波速成正比(机械波的波速只有介质决定)。

5.波动中,所有质点都不会随波逐流,所有质点的起振方向都相同

6.两列频率相同、且振动情况完全相同的波,在相遇的区域能发生干涉。波峰与波峰(波谷与波谷)相遇处振动加强(△s=±kλk=0、1、2、3……);波峰与波谷相遇处振动减弱(△s=±(2k+1)λ/2k=0、1、2、3……)干涉和衍射是波的特征。

7.受迫振动时,振动频率等于驱动力频率,与固有频率无关.只有当驱动力频率等于固有频率时会发生共振.

八.热学

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10—10米,原子核直径数量级10—15米

2.分子质量m=M/N(M为摩尔质量,N为阿伏加德罗常数);分子体积为V0=V/N(V为摩尔体积,注意:如果是气体,则为分子的占有体积)

3.布朗运动是微粒的运动,不是分子的运动.

4.分子势能用分子力做功来判断,r0处分子势能最小,分子力为零.

5.分析气体过程有两条路:一是用参量分析(PV/T=C)、二是用能量分析(ΔE=W+Q)。内能变化看温度,做功情况看体积,吸放热则综合前两项考虑

6.一定质量的理想(分子力不计)气体,内能看温度,做功看体积,吸热放热综合以上两项用能量守恒分析。

九.电场:

1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值(减少量):。

2.粒子飞出偏转电场时“速度的反向延长线,通过沿电场方向的位移的中心”。

3.讨论电荷在电场里移动过程中电场力的功基本方法:把电荷放在起点处,标出位移方向和电场力的方向,分析功的正负,并用W=FS计算其大小;或用W=qU计算.

4.处于静电平衡的导体内部合场强为零,整个是个等势体,其表面是个等势面.

5.电场线的疏密反映E的大小;沿电场线的方向电势越来越低;电势与场强之间没有联系.

6.电容器接在电源上,电压不变;断开电源时,电容器电量不变;改变两板距离,场强不变。

7.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。

8.带电粒子在交变电场中的运动:

①直线运动:不同时刻进入,可能一直不改方向的运动;可能时而向左时而向右运动;可能往返运动(可用图像处理)

②垂直进入:若在电场中飞行时间远远小于电场的变化周期,则近似认为在恒定电场中运动(处理为类平抛运动);若不满足以上条件,则沿电场方向的运动处理同①

③带电粒子在电场和重力场中做竖直方向的圆周运动用等效法:当重力和电场力的合力沿半径且背离圆心处速度最大,当其合力沿半径指向圆心处速度最小.

9.沿电场线的方向电势越来越低,电势和场强大小没有联系.

十.恒定电流:

1.电流的微观定义式:I=nqsv

2.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。

3.电路中的一个滑动变阻器阻值发生变化,有并同串反关系:电阻增大,与它并联的电阻上电流或电压变大,与它串联的电阻上电流或电压变小;电阻减小,与它并联的电阻上电流或电压变小,与它串联的电阻上电流或电压变大.

4.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。

外电路任一处的一个电阻减小,总电阻减小,总电流增大,路端电压减小。

5.画等效电路的办法:始于一点(电源正极),止于一点(电源负极),盯住一点(中间等势点),步步为营。

6.纯电阻电路中,内、外电路阻值相等时输出功率最大(R外=r),;

7.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。稳定时,与它串联的电阻是虚设,如导线。在电路变化时电容器有充、放电电流。

恒定电流实验:

1.考虑电表内阻的影响时,电压表和电流表在电路中,既是电表,又是电阻。

2.选用电压表、电流表:

①测量值不许超过量程。

②测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。

③电表不得小偏角使用,偏角越小,相对误差越大。

3.选欧姆表时,指针偏角应在三分之一到三分之二之间(选档、换档后,经过“调零”才能进行测量)。.

4.选限流用的滑动变阻器:在能把电流限制在允许范围内的前提下选用总阻值较小的变阻器调节方便;选分压用的滑动变阻器:阻值小的便于调节且输出电压稳定,但耗能多。

5.分压式和限流式电路的选择:

①题目要求电压或电流从零可调(校对电路、测伏安特性曲线),一定要用分压式。

②滑动变阻器的最大值比待测电阻的阻值小很多时,限流式不起大作用,要用分压式。

③用限流式时不能保证用电器安全时用分压式。

④分压和限流都可以用时,限流优先(能耗小)。

6.伏安法测量电阻时,电流表内、外接的选择:

①RX远大于RA时,采用内接法,误差来源于电流表分压,测量值偏大;

②RV远大于RX时,采用外接法,误差来源于电压表分流,测量值偏小.

③大于时,采用内接法;小于时,采用外接法

7.电压表或电流表中,电流大小与其偏转角成正比,一般有左进左偏,右进右偏

8.测电阻常用方法:

①伏安法②替代法③半偏法④比较法

9.已知内阻的电压表可当电流表使用;已知内阻的电流表可当电压表使用;已知电流的定值电阻可当电压表使用;已知电压的定值电阻可当电流表使用.

10.欧姆表的中值电阻刚好等于其欧姆表的内阻.

十一.磁场:

1.圆形磁场区域:带电粒子沿半径方向进入,则出磁场时速度方向必过圆心

2.粒子速度垂直于磁场时,做匀速圆周运动:,(周期与速率无关)。

3.粒子径直通过正交电磁场(离子速度选择器):粒子穿过磁场的有关计算,抓几何关系,即入射点与出射点的半径和它们的夹角

4.最小圆形磁场区域的计算:找到磁场边界的两点,以这两点的距离为直径的圆面积最小

5.圆形磁场区域中飞行的带电粒子的最大偏转角为进入点和出点的连线刚好为磁场的直径

6.要知道以下器件的原理:质谱仪、速度选择器、磁流体发电机、霍耳效应、电磁流量计、地磁场、磁电式电表原理、回旋加速器、电磁驱动、电磁阻尼、高频焊接等.

7。带电粒子在匀强电场、匀强磁场和重力场中,如果做直线运动,一定做匀速直线运动。如果做匀速圆周运动,重力和电场力一定平衡,只有洛仑兹力提供向心力。

8。电性相同的电荷在同一磁场中旋转时,旋转方向相同,与初速度方向无关。

十二.电磁感应:

1.楞次定律的若干推论:

(1)内外环电流或者同轴的电流方向:“增反减同”

(2)导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

(3)磁场“╳增加”与“•减少”感应电流方向一样,反之亦然。

(4)磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势

2.运用楞次定律的若干经验:

①内外环电路或者同轴线圈中的电流方向:“增反减同”

②导线或者线圈旁的线框在电流变化时:电流增加则相斥、远离,电流减小时相吸、靠近。

③“×增加”与“•减少”,感应电流方向一样,反之亦然。

④单向磁场磁通量增大时,回路面积有收缩趋势,磁通量减小时,回路面积有膨胀趋势。通电螺线管外的线环则相反。

⑤楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

⑥感应电流的方向变否,可以看B-t图像中斜率正负是否变化.

3.磁通量的计算中,无论线圈有多少匝,计算时都为φ=BS

4.自感现象中,灯泡是否闪亮,要看后来的电流是否比原来大,若是,则闪亮,否则不闪亮.日光灯线路连接.

5.楞次定律逆命题:双解,“加速向左”与“减速向右”等效。

6.法拉第电磁感应定律求出的是平均电动势,在产生正弦交流电情况下只能用来求感生电量,不能用来求功和能量。

7.直杆平动垂直切割磁感线时所受的安培力:

8.转杆(轮)发电机:

9.感生电量:

十三.交流电:

1.正弦交流电的产生:

中性面为垂直磁场方向,此时磁通量最大,磁通量的变化率为零,电动势为零

线圈平面平行于磁场方向时,此时磁通量最小,磁通量的变化率最大,电动势最大。

最大电动势:与Em此消彼长,一个最大时,另一个为零。

2.交流电中,注意有效值和平均值的区别,能量用有效值,电量用平均值.

3.求电量的方法有两种:①用平均电动势得q=nΔφ/R②动量定理

4.非正弦交流电的有效值的求法:I2RT或U2T/R等于一个周期内产生的总热量.

5.理想变压器原副线之间量的决定关系:电压原线圈决定副线圈;电流副线圈决定原线圈;功率副线圈决定原线圈

6.变压器中说负载增加,实为并联的用电器增多,负载电阻减小.

7.远距离输电计算的思维模式要记好.

8.自藕变压器和滑动变阻器,电流互感器和电压互感器要区分.

9.理想变压器原副线圈之间相同的量:

十四.电磁场和电磁波:

1.电磁振荡中电容器上的电量q与电流i的关系总是相反。

2.电磁场理论:

①变化的磁(电)场产生电(磁)场

②均匀变化的磁(电)场产生的稳定的电(磁)场

③周期性变化的磁(电)场产生周期性变化的电(磁)场

3.感抗为XL=2πLf;容抗为XC=1/2πfc

十五.光的反射和折射:

1.光通过平行玻璃砖,出玻璃砖时平行于原光线;光过棱镜,向底边偏转.

2.光线射到球面和柱面上时,半径是法线.

3.单色光对比的七个量:偏折角、折射率、波长、频率、介质中的光速、光子能量、临界角.

4.可见光中:红光的折射率最小,紫光的折射率最大;红光在介质中的光速最大,紫光在介质中的光速最小;红光最不易发生全反射,紫光最易发生全反射;红光的波动性比紫光强,粒子性比紫光弱;红光的干涉条纹(或衍射条纹的中间条纹)间距比紫光大;紫光比红光更易引起光电效应.

5.视深公式h’=h/n(水中看七色球,感觉红球最深,紫球最浅)

十六.光的本性:

1.双缝干涉图样的“条纹宽度”(相邻明条纹中心线间的距离):。

2.增透膜增透绿光,其厚度为绿光在膜中波长的四分之一。

3.薄膜干涉中用标准样板(空气隙干涉)检查工件表面情况:条纹向窄处弯是凹,向宽处弯是凸(左凹右凸)。

4.电磁波穿过介质面时,频率(和光的颜色)不变。

十七.量子论初步

1.个别光子表现出粒子性;大量光子表现出波动性

2.跃迁中,从n能级跃迁到基态时,将会放出Cn2种不同频率的光.

3.能引起跃迁的,若用光照,能电离可以,否则其能量必须等于能级差,才能使其跃迁;若用实物粒子碰撞,只要其动能大于(或等于)能级差,就能跃迁.

4.个别光子表现为粒子性,大量光子表现为波动性.

十七.原子物理:

1.磁场中的衰变:外切圆是衰变,内切圆是衰变,半径与电量成反比。

2.衰变方程、人工核转变、裂变、聚变这四种方程要区分

3.1u相当于931.5MeV,注意题目中的质量单位是Kg还是u.

4.核反应总质量增大时吸能,总质量减少时放能,仅在人工转变中有一些是吸能的核反应。

其它常见非常有用的经验结论:

1、物体沿倾角为α的斜面匀速下滑------µ=tanα;

物体沿光滑斜面滑下a=gsinα物体沿粗糙斜面滑下a=gsinα-gcosα

2、两物体沿同一直线运动,在速度相等时,距离有最大或最小;

3、物体沿直线运动,速度最大的条件是:a=0或合力为零。

4、两个共同运动的物体刚好脱离时,两物体间的弹力为=0,加速度相等。

5、两个物体相对静止,它们具有相同的速度;

6、水平传送带以恒定速度运行,小物体无初速度放上,达到共同速度过程中,摩擦生热等于小物体的动能。

7、一定质量的理想气体,内能大小看温度,做功情况看体积,吸热、放热综合以上两项用能量守恒定律分析。

8、电容器接在电源上,电压不变;断开电源时,电容器上电量不变;改变两板距离E不变。

10、磁场中的衰变:外切圆是α衰变,内切圆是β衰变,α,β是大圆。

11、直导体杆垂直切割磁感线,所受安培力F=B2L2V/R。

12、电磁感应中感生电流通过线圈导线横截面积的电量:Q=N△Ф/R。

13、解题的优选原则:满足守恒则选用守恒定律;与加速度有关的则选用牛顿第二定律F=ma;与时间直接相关则用动量定理;与对地位移相关则用动能定理;与相对位移相关(如摩擦生热)则用能量守恒。

参考资料:电磁流量计仪表

进口流量开关更多